Appendix

Appendix 1A

Figure 1A.1: The Little Karoo in South africa

The Little Karoo of South Africa is a semi-arid inter-montane basin falling into the Cape Floristic Region, where three globally-recognised biodiversity hotspots intermingle [230, 231, 240]. The succulent Karoo biome is one of two international biodiversity hotspots located in arid regions [230]. In South Africa, although these semi-arid rangelands contain some of the most biodiversity rich landscapes in the country, they are also some of the least conserved spaces; falling under the national average of 6% of their area under protection [253].

220ELSA M. S.

Appendix 2A

Data Volume BUSSIERE

Table 2A.1: Camera trap data volumes. These statistics describe the amount of data collected throughout the camera trap study, which took place \mathcal{L} in the Little Karoo.

	Northern Sanbona included Northern Sanbona excl	
Overall dataset		
Camera trap sites:	222	207
Camera trap nights:	17631	16409
Photo-captures:	26312	25211
Percentage of duplicates:	55	56
Independent photo-captures:	11742	10991
Species:	91	86
Mammals:	51	46
Birds:	39	39
Reptiles:	1	1
Seasonal dataset		
Camera trap sites:		207
Total camera trap nights:		14331
Photo-captures:		21469
Percentage of duplicates:		58
Independent photo-captures:		9057
Species:		80
Mammals:		46
Birds:		33
Reptiles:		1

Appendix 3A

221BIOLOGICAL SCIENCES

ness) for 27 mammal species in the Little Karoo [Chapter 1 section 1.3.3.2].

Figure 3A.1: aardvark

Figure 3A.2: aardwolf

Figure 3A.3: African wildcat

222 Elsa m. s. Bussiere

Figure 3A.4: black-backed jackal

Figure 3A.5: brown hyena

Figure 3A.6: Cape gray mongoose

Figure 3A.7: Cape hare

Figure 3A.8: Cape mountain zebra

Figure 3A.9: Cape porcupine

224 ELSA M. S. BUSSIERE

Figure 3A.10: caracal

Figure 3A.11: chacma baboon

Figure 3A.12: eland

Figure 3A.13: gemsbok

Figure 3A.14: greater kudu

Figure 3A.15: grey duiker

226 Elsa m. s. Bussiere

Figure 3A.16: grey rhebuck

Figure 3A.17: grysbok

Figure 3A.18: Hewitts red rock rabbit

Figure 3A.19: honey badger

Figure 3A.20: klipspringer

Figure 3A.21: leopard

228 Elsa m. s. Bussiere

Figure 3A.22: red hartebeest

Figure 3A.23: rock hyrax

Figure 3A.24: scrub hare

Figure 3A.25: small spotted genet

Figure 3A.26: springbok

Figure 3A.27: steenbok

ELSA M. S. BUSSIERE

Appendix 4A

Demonstration of Eq. 2.11

To lighten the presentation, functions' variables were only annotated at the first occurrence of the function definition.

 $t \mapsto A_{e,s}(t)$ and $t \mapsto A_{w,s}(t)$ are probability density functions whose domain is D = [0, 24], therefore:

$$\forall t \in D, \ A_{e,s} \ge 0, \quad A_{w,s} \ge 0, \quad S_{,s} = A_{e,s} - A_{w,s} \quad \text{and} \quad A_{e,s}, \ A_{w,s}, \ S_{,s} \in C^o(D)$$

$$\int_{0}^{24} A_{e,s} \cdot dt = \int_{0}^{24} A_{w,s} \cdot dt = 1 \quad \Leftrightarrow \quad \int_{0}^{24} S_{,s} \cdot dt = 0$$

$$O_{,s} = \int_{0}^{24} \min(A_{e,s}, \ A_{w,s}) \cdot dt$$

$$D = D^+ + D^-,$$

$$D^{+} = \bigcup_{i=1}^{n} [a_{i}, b_{i}], \ \forall \ t \in D^{+}, \ A_{e,s} \ge A_{w,s} \Leftrightarrow \int_{a_{i}}^{b_{i}} A_{w,s} \cdot dt = \int_{a_{i}}^{b_{i}} \min(A_{e,s}, \ A_{w,s}) \cdot dt$$
$$D^{-} = \bigcup_{j=1}^{m} [c_{j}, d_{j}], \ \forall \ t \in D^{-}, \ A_{e,s} \le A_{w,s} \Leftrightarrow \int_{c_{j}}^{d_{j}} A_{e,s} \cdot dt = \int_{c_{j}}^{d_{j}} \min(A_{e,s}, \ A_{w,s}) \cdot dt$$

Figure 4A.1: Example showing D^+ and D^- , with n = 3 and m = 2

$\mathbf{230}$

 $\int_{0}^{24} |S_{,s}| \cdot dt = \int_{0}^{24} |A_{e,s} - A_{w,s}| \cdot dt$ $= \sum_{i=1}^{n} \int_{a_{i}}^{b_{i}} A_{e,s} - A_{w,s} \cdot dt - \sum_{j=1}^{m} \int_{c_{j}}^{d_{j}} A_{e,s} - A_{w,s} \cdot dt$ $= \sum_{i=1}^{n} \int_{a_{i}}^{b_{i}} A_{e,s} - A_{w,s} \cdot dt + \sum_{j=1}^{m} \int_{c_{j}}^{d_{j}} A_{w,s} - A_{e,s} \cdot dt$ $= \sum_{i=1}^{n} \int_{a_{i}}^{b_{i}} A_{e,s} - A_{w,s} + A_{w,s} - A_{w,s} \cdot dt + \sum_{j=1}^{m} \int_{c_{j}}^{d_{j}} A_{w,s} - A_{e,s} + A_{e,s} - A_{e,s} \cdot dt$ $= \int_{0}^{24} A_{e,s} + A_{w,s} \cdot dt - 2 \cdot \sum_{i=1}^{n} \int_{a_{i}}^{b_{i}} A_{w,s} \cdot dt - 2 \cdot \sum_{j=1}^{m} \int_{c_{j}}^{d_{j}} A_{e,s} \cdot dt$ $= 2 - 2 \cdot (\sum_{i=1}^{n} \int_{a_{i}}^{b_{i}} \min(A_{e,s}, A_{w,s}) \cdot dt + \sum_{j=1}^{m} \int_{c_{j}}^{d_{j}} \min(A_{e,s}, A_{w,s}) \cdot dt)$ $= 2 \cdot (1 - \int_{0}^{24} \min(A_{e,s}, A_{w,s}) \cdot dt)$

The demonstration would be the same for $A'_{e,s}$, $A'_{w,s}$, $S'_{,s}$ and $A''_{e,s}$, $A''_{w,s}$, $S''_{,s}$:

$$\int_{0}^{24} |S_{,s}| \cdot dt = 2 \cdot (1 - O_{,s})$$
$$\int_{0}^{24} |S_{,s}'| \cdot dt = 2 \cdot (1 - O_{,s}')$$
$$\int_{0}^{24} |S_{,s}''| \cdot dt = 2 \cdot (1 - O_{,s}'')$$

231

Appendix 5A

Parameter coefficients from best-performing models

Modelling leopard population density in the Little Karoo.

Table 5A.1: β coefficients from Model 21

This table provides the β coefficients estimated on the original scale when Model 21 was fitted. Once transformed on the scale given by the link function, the real parameter values (fitted values) can be accessed: log-transformed density D and σ ; logit-transformed g0 and pmix.

	Estimate	SE	LCL	UCL
D	-11.02	0.92	-12.82	-9.22
D s($ruggedness$) 1	8.13	9.16	0.98	26.08
D s($ruggedness$) 2	0.34	0.56	-0.76	1.43
g0	-3.52	0.12	-3.77	-3.28
σ	7.25	0.15	6.96	7.55
σ h2	1.14	0.13	0.88	1.40
σ session B	0.28	0.13	0.03	0.53
σ session C	0.52	0.15	0.23	0.81
σ session D	0.10	0.18	-0.25	0.45
σ session E	0.33	0.12	0.10	0.56
σ session F	0.28	0.11	0.06	0.50
pmix $h2$	-0.83	0.41	-1.63	-0.03

Table 5A.2: β coefficients from Model 22

This table provides the β coefficients estimated on the original scale when Model 22 was fitted. Once transformed on the scale given by the link function, the real parameter values (fitted values) can be accessed: log-transformed density D and σ ; logit-transformed g0 and pmix.

	Estimate	SE	LCL	UCL
D	-11.27	1.10	-13.43	-9.11
D s($ruggedness$) 1	0.70	1.71	-2.65	4.05
D s($ruggedness$) 2	5.23	5.71	-5.96	16.42
D s($ruggedness$) 3	0.66	0.68	-0.67	1.98
g0	-3.53	0.12	-3.77	-3.28
σ	7.25	0.15	6.96	7.55
$\sigma h2$	1.14	0.13	0.88	1.40
σ session B	0.28	0.13	0.03	0.53
σ session C	0.52	0.15	0.23	0.81
σ session D	0.11	0.18	-0.24	0.45
σ session E	0.33	0.12	0.10	0.57
σ session F	0.28	0.11	0.06	0.50
pmix $h2$	-0.82	0.40	-1.61	-0.03